
1. Inverse methods across various fields.

Across many fields, there exists usually something similar to the following.

parameters : m

data : d

map : f(m)→ d

This map is generated by the ‘model’ or the ‘solution’ F often given by a matrix or even a PDE like
below.

F (u(x, t),m) = 0︸ ︷︷ ︸
ut+mux=0, u(x,0)=u0

And what ends up happening usually is

min
m
||f(m)− d||

A lot of incremental progress and research has been on improving optimization algorithms. However,
I want to believe that no algorithm can capture the optimality that comes with framing a hard problem
with the right perspective.

1.1. Bayes Rule

p(x|y) =
p(y|x)p(x)

p(y)

So, effectively
p(x|y) ∝ p(y|x)p(x)

This is essentially the basis for Bayesian inverse problems. We want to find the parameters x that have
generated the solution y. We have some initial information about x, this is our bias about x and that is
encoded in the ‘prior’ p(x). Also, the more likely the parameters are to generate the solution y, the more
likely it is to be the true parameter. This is encoded by the likelihood function p(y|x). So, maximising the
likelihood is essentially the same as

min
x
||y(x)− ytrue||

So, a Bayesian inverse problem is the same as the standard minimzation with maybe a regularization
term because that is our bias or our prior information about the problem. The difference is that Bayesian
methods give you a distribution while minimization methods give you the minima.

For example, for Gaussian processes,

p(x) ∝ e
− (x−µp)2

σ2p

p(y|x) ∝ e
− ((x−y)2

σp02

p(x|y) ∝ e
− ((x−y)2

σp02
− (x−µp)2

σ2p

Preprint submitted to Elsevier July 5, 2020

The standard deviation of p(x|y) is lower than both σ0, σp.
The posterior is easy to calculate in this 1-d case. But in general, the posterior might not have a closed

form solution or it is very high-dimensional. In those cases, people use sampling like MCMC sampling to
get an idea of the maxima. People also use variational methods to find the minimizer of the log-likeklihood.

2. The different approaches to estimation would all result in the same answer if everything
was linear and Gaussian

2.1. BLUE

Suppose we want to measure something called X. You have some idea of what it should be like (your
prior). And you have some observations. Based on these observations, you can get a good estimate of
X. For example, think of wanting to estimate the temperature in your room and going around with a
thermometer.

We have
Background(Prior) : xb

Observation : y

Unknowntruth : xt

Analysis(Posterior) : xa

And we have errors defined by
eb = xb − xt
eo = y − xt
ea = xa − xt

We can make the following reasonable assumption that

eb ⊥ eo

We have the following rule/estimator

xa = xb + θ(y − xb)

xa − xt = xb − xt + θ(y − xt − (xb − xt))

ea = eb + θ(eo − eb)

If E[eo] = E[eo] = 0
E[ea] = 0

So, the mean of the error of our analysis is zero. Let’s look at the variance

Var[ea] = E[(ea − E[ea])(ea − E[ea])
T]

= E[eae
T
a]

= E[(eb + θ(eo − eb)(eb + θ(eo − eb))T]

= E[ebe
T
b + θ2(eoe

T
o + ebe

T
b)− 2θ(ebe

T
b)]

In the scalar case, this becomes

σ2
a = σ2

b + θ2(σ2
o + σ2

b)− 2θσ2
b

2

The θ that optimizes this is obtained by taking a derivative

θ∗ =
σ2
b

σ2
o + σ2

b

So, our Best Linear Unbiased Estimator of x that minimizes the variance is given by

xa = xb +
σ2
b

σ2
o + σ2

b

(y − xb)

If we had a lot of certainty in our bias, then σb << σo and we have

xa = xb + 0 = xb

If we were certain that our observation errors were negligible, then σo << σb and we have

xa = xb + (y − xb) = y

2.2. The optimization perspective

Let’s try to frame this question differently. Suppose we had our background guess defined as

xb = xt + εb, εb ∼ N(0, B)

y = Hxt + εo, εo ∼ N(0, R)

Here, B and R are the covariance matrices of the error in our bias and our observations. We can define
the following cost function where the least squares is weighted with the covariance matrices.

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(y −Hx)R−1(y −Hx)

To find the minima, we need to take the derivative.

∇J(x)|xopt = 0

0 = B−1(xopt − xb)−HTR−1(y −Hxopt)

xopt = xb + (B−1 −HTR−1H)−1HTR−1(y −Hxb)
= xb +BHT (R +HBHT)−1︸ ︷︷ ︸

K

(y −Hxb)

This K is our Kalman gain which tells you how much you have gained from your observations. If you
look carefully at K, you can see how it is exactly θ∗ in the scale case (and if H was the identity). So, a
different perspective has unearthed the same idea of how our bias and our observations should be weighted.

2.3. Bayes rule

Suppose we wanted to estimate x which could be the temperature of a room. We expect x to be
distributed normally around xb.

x ∼ N(xb, σ
2
b)

3

We walk around the room making observations with our thermometer.

y = [y, y2, . . . , yn]

yi = x+ εo, εo = N(0, σ2)

p(y|x) = p(y1|x)p(y2|x) . . . p(yn|x)

=
n∏
i=1

p(yi|x)

=
n∏
i=1

e−
(yi−x)

2

2σ2

= e−
∑
i
(yi−x)

2

2σ2

So, from Bayes rule,

p(x|y) = p(y|x)p(x)

= e
−

∑
i
(yi−x)

2

2σ2
−
∑
i
(x−xb)

2

2σ2
b

= N(µxy, σxy)

The product of two Gaussians is another Gaussian.

p(x|y) = p(y|x)p(x)

= e
−

∑
i
(yi−x)

2

2σ2
−
∑
i
(x−xb)

2

2σ2
b

= N(µxy, σxy)

and the mean of this Gaussian is given by

µx|y =

(
n

σ2
+

1

σ2
b

)−1(∑ yi
σ2

+
xb
σ2
b

)
Taking n = 1 for simplicity, this can be written as

µx|y =
σ2σ2

b

σ2 + σ2
b

(
y

σ2
+
xb
σ2
b

)
=

σ2
b

σ2 + σ2
b

y +
σ2

σ2 + σ2
b

xb

= xb +
σ2
b

σ2 + σ2
b

(y − xb)

4

So, all roads lead to BLUE when things are linear and Gaussian.

3. Kalman Filter

3.1. Theory

The Kalman filter is a way to estimate the states of a process using sequential assimilation. The process

xk+1 = Mk+1xk + wk

with observations
yk = Hkxk + vk

The noise is distributed by

wk ∼ N (0, Qk)

vk ∼ N (0, Rk)

We define two of our estimates, one obtained by predicting xk from xk−1 and another by correcting the
prediction.

Forecast(Prediction) : xfk

Analysis(Correction) : xak

It has errors defined by

efk = xfk − x
t
k

eak = xak − xtk
where xt refers to the truth.

And covariance matrices given by

P f
k = cov(efk) = E[efk(e

f
k)
T]

P a
k = cov(eak) = E[eak(e

a
k)
T]

We have our Kalman Filter correction rule.

xak = xfk +Kk(yk −Hkx
f
k)

where Kk is the Kalman gain at step k.

xak = xfk +Kk(Hx
t
k + vk −Hkx

f
k)

= xfk +Kk(H(xtk − x
f
k) + vk)

eak = xak − xt = xfk +Kk(Hx
t
k + vk −Hkx

f
k)

= xfk +Kk(H(xtk − x
f
k) + vk)− xtk

= Kk(vk −Hefk)− e
f
k

5

P a
k = E[eak(e

a
k)
T] = E[(Kk(vk −Hefk)− e

f
k)(Kk(vk −Hefk)− e

f
k)
T]

= (I −KkHk)P
f
k (I −KkHk)

T +KkRkK
T
k

P a
k = (I −KkHk)P

f
k (I −KkHk)

T +KkRkK
T
k

To make the effect of the covariance matrix as minimal as possible, we try to minimize its trace using
these helpful matrix derivatives.

d

dA
Tr(AB) = BT

d

dA
Tr(ACAT) = 2AC

d

dKk

Tr(P a
k) = −2(HkP

f
k)T + 2Kk(HkKkH

T
k +Rk)

This helps us reveal the Kalman gain that minimizes the trace of the covariance.

Kk = P f
kH

T
k (HkP

f
kH

T
k +Rk)

−1

And thus we get the minimized covariance of our analysis.

P a
k = (I −KkHk)P

f
k

So, we have the Kalman procedure
Prediction

xfk+1 = Mk+1x
a
k

P f
k+1 = Mk+1P

a
kM

T
k+1 +Qk+1

Correction

Kk+1 = P f
k+1H

T (HP f
k+1H

T +Rk+1)
−1

xak+1 = xfk+1 +Kk+1(yk+1 −Hxfk+1)

P a
k+1 = (I −Kk+1H)P f

k+1

6

3.2. A linear example

This is an example which use the Kalman filter to find the velocity of a car when only the position is
observed.

The process is given by
u = u0 + vt

And the state is defined by

x =

[
u
v

]
We have the following map

xk+1 =

[
1 ∆t
0 1

]
xk

And the following observation matrix.
H =

[
1 0

]
Using this, the Kalman filter converges quickly to the true velocity.
One thing to remember is that the Kalman filter is optimal for linear cases but non-linear cases can

fail. So, people use Extended KF and Ensemble KF which is very state of the art.

3.3. A nonlinear example

Suppose we want to estimate the dynamics of a pendulum where its position u is given by

u(t) = sin(θt) + ε

So, we write as a differential equation
u′ = θ cos(θt) + εt

After linearizing around θ0

u′ = θ0 cos(θ0t) + (cos(θ0t)− θ0 sin(θ0t))(θ − θ0) + εt

7

where ε is the model error and θ is an unknown parameter. So, we use the Kalman filter with

x =

[
u
θ

]
Following the Kalman filter notation, we have

xfk+1 = Mk+1x
a
k + c

where c is an offset vector needed in the case where we do a taylor expansion around θ0 6= 0.

Mk+1 =

[
1 ∆t(−θ0 sin(θ0t) + cos(θ0t))
0 1

]
, c =

[
∆tθ0tksin(θtk)

0

]
If θ0 = 0,

Mk+1 =

[
1 ∆t
0 1

]
, c =

[
0
0

]
Then, we have

P f
k+1 = Mk+1P

a
kM

T
k+1 +Q

where we choose

P a
0 =

[
0.5 0
0 0.5

]
, Q =

[
Qu 0
0 0.0001

]
After that, we seek to incorporate the measurements y which have the following relation with x

y = Hx+R

For our case, since we cannot measure θ, we have

H =

[
1 0
0 0

]
, R =

[
Ru 0
0 0.001

]
Then, use the update rules that minimize the variance of the unbiased linearized analysis.

Kk+1 = P f
k+1H

T (HP f
k+1H

T +R)−1

xak+1 = xfk+1 +Kk+1(y −Hxfk+1)

P a
k+1 = (I −Kk+1H)P f

k+1

4. Variational approach to inverse problems

The calculus of variations is an old reliable field that has applications in inverse problems especially
when differential equations are used.

Suppose we have a system obeying this law (pde/ode etc).

L(u,m) = f

Now, we want to find the parameters m from observations. So, we define a cost function

J(m) =

∫
(u(m)− uobs)2︸ ︷︷ ︸

J1

dΩ

8

Now, we start with a guess for m, compute the gradient and go down the gradient hill till you reach
the minima. But we need the gradient for that.

δJ = ∇mJδm

= ∇uJ
du

dm
δm

= ∇uJδu

=< ∇uJ1δu >

δu could be very expensive to compute numerically because you have to see the change in u spread
possibly in space and time for a small change in m. Calculus of variation helps up reformulate the gradient
into a simpler form.

Take our law.
L(u,m) = f

Its variation should be zero.

δL = ∇uLδu+∇mLδm = 0

Now, I multiply the above expression with a test function p and integrate.

< p∇uLδu > + < p∇mLδm >= 0

Adding this to δJ ,

∇mJδm =< ∇uJ1δu > + < p∇uLδu > + < p∇mLδm >

=< δu(∇uJ1 +∇uL
∗p) > + < δm∇mL

∗p >

In the last step, we used the definition of adjoint

< p∇uLδu >=< δu∇uL
∗p >, < δm∇mL

∗p >=< p∇mLδm >

Now, if ∇uL
∗p = −∇uJ1, then we have

∇mJδm =< δm∇mL
∗p >

This allows you to find the gradient ∇mJ a lot easier.
Great. Why don’t we do this always? Couple of difficulties:

• It’s not always possible to compute the adjoint especially with boundary or initial conditions that
do not add up

• There might be multiple non-unique minima. People try to solve this through regularization and
hybrid algorithms.

• The cost function can sometimes be very flat. This can be avoided by proper scaling of parameters
[Nocedal and Wright]

• The gradient obtained is for the continuous problem while numerically we never do the continuous
problem.

9

Important: In these notes, the technique used to find the continuous adjoint is the Lagrange multiplier
approach. An alternate approach is the Tangent Linear Model method which is discussed in the first
reference book.

4.1. An ODE example

Suppose we have the equation

−(a(x)u′(x))′ − u′(x) = q(x), 0 < x < 1

u(0) = 0, u(1) = 0

We can define a cost function as

J [a] =
1

2

∫ 1

0

(u− uobs)2dx+

∫ 1

0

p(−(au′)′ − u′ − q)dx

δJ [a] =

∫ 1

0

(u− uobs)δudx+

∫ 1

0

δp(−(au′)′ − u′ − q)dx

+

∫ 1

0

p(−(δau′ + aδu′)′ − δu′)dx

δJ [a] =

∫ 1

0

(u− uobs)δudx+

∫ 1

0

p(−(δau′ + aδu′)′ − δu′)dx

=

∫ 1

0

(u− uobs)δudx+

∫ 1

0

p′(δau′dx+ aδu′dx) + p′δudx

=

∫ 1

0

(u− uobs + p′ − (ap′)′)δudx+

∫ 1

0

p′u′δadx

We used integration by parts above and omitted the boundary terms for clarity. The boundary terms
are zero if p is zero on the boundary. Also, I think p′aδu should be zero on the boundary. (Later I realized
that that term implied that a(0) = a(1) = 0).

If p satisfies
p′ − (ap′)′ = −(u− uobs)

p(0) = 0, p(1) = 0

then

δJ [a] =

∫ 1

0

p′u′δadx

And we obtain our gradient

∇a(x)J [a] = p′u′

10

4.2. Constant coefficient case

In the previous example, what happens when a(x) is a constant a?

J [a] =
1

2

∫ 1

0

(u− uobs)2dx+

∫ 1

0

p(−au′′ + u′ − q)dx

δJ [a] =

∫ 1

0

(u− uobs)δudx+

∫ 1

0

p(−δau′′ − aδu′′ − δu′)dx

=

∫ 1

0

(u− uobs)δudx+

∫ 1

0

−pu′′δadx− p′′aδudx+ p′δudx

=

∫ 1

0

(u− uobs + p′ − ap′′)δudx−
∫ 1

0

pu′′δadx

Our adjoint equation is
p′ − (ap′)′ = −(u− uobs)

p(0) = 0, p(1) = 0

and we have

δJ [a] = −
∫ 1

0

pu′′δadx

And we obtain our gradient

∇aJ [a] = −
∫ 1

0

pu′′dx

You might face some confusion because this is of a different form from the gradient in the previous
section especially because of the presence of an integral. What may ease your confusion is thinking of the
integral as a summation you are differentiating. In this case, a is constant over the summation so we can
take it out of the sum leaving us still with a sum i.e an integral.

4.3. Linear PDE example

Suppose we have the heat equation

∂u

∂t
−∇.(ν∇u) = 0

u(x, 0) = u0(x), u(0, t) = 0, u(L, t) = η(t)

Each one of these unknown parameters corresponds to classical inverse problems.

• internal control ν(x) - tomography.

• initial control u0(x) - source detection problem.

• boundary control η(t)

11

We can solve for all 3 simultaneously with this cost function.

J [ν, u0, η] =
1

LT

∫ T

0

∫ L

0

(u− uobs)2dxdt+
1

LT

∫ T

0

∫ L

0

p(ut − (νux)x)dxdt

After integration by parts, we get the following adjoint equation

∂p

∂t
−∇.(ν∇p) = 2(u− uobs)

p(0, t) = 0, p(L, t) = 0, p(x, T) = 0

The adjoint equation is solved backwards in time and we can compute the following gradients.

∇ν(x) =
1

T

∫ T

0

uxpxdt

∇u|t=0 = −p|t=0

∇η|x=L = νp|x=L

5. 3d-Var and 4d-Var

We have two ways of doing things

• AtD: Adjoint then Discretize

• DtA: Discretize then Adjoint

5.1. The stationary case: 3d-Var

xb = xt + εb

y = Hxt + εo

We start with a cost function of the following form:

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y)

xa = xb +K(y −H(xb))

where
K = BHT (HBHT +R)−1

Now, in real life applications like a PDE or ODE, the matrices used to compute K could be way too
large to store in memory.

5.2. The non-stationary case: 4d-Var

yk = Hkxk + εok

And let us assume our model is devoid of any error.

xk+1 = Mk+1xk

12

Then a single variable, the initial condition x0 determines all of the xk. We have the following cost
function.

J(x0) =
1

2
(x0 − xb0)T (P b

0)(x0 − xb0) +
1

2

K∑
k=0

(Hkxk − yk)TR−1k (Hkxk − yk)

In the presence of model uncertainty,

xtk+1 = Mk+1x
t
k + ηk+1

J(x0, x1, . . . , xK) =
1

2
(x0 − xb0)T (P b

0)(x0 − xb0) +
1

2

K∑
k=0

(Hkxk − yk)TR−1k (Hkxk − yk)

+
1

2

K−1∑
k=0

(xk+1 −Mk+1xk)
TQ−1k+1(xk+1 −Mk+1xk)

5.3. Adjoint approach to 4d-Var

We have the cost

J(x0) =
1

2
(x0 − xb0)T (P b

0)−1(x0 − xb0) +
1

2

K∑
k=0

(Hkxk − yk)TR−1k (Hkxk − yk)

δJ = (∇x0J)T δx0

and the dynamics
xk+1 = Mk+1xk

δxk+1 = Mk+1δxk

δxk+1 −Mk+1δxk = 0

pTk+1(δxk+1 −Mk+1δxk) = 0

δJ = (x0 − xb0)T (P b
0)−1δx0 +

K∑
k=0

(Hkxk − yk)TR−1k Hkδxk

Adding the above two lines we get

δJ = (x0 − xb0)T (P b
0)−1δx0 +

K∑
k=0

(Hkxk − yk)TR−1k Hkδxk −
K−1∑
k=0

pTk+1(δxk+1 −Mk+1δxk)

δJ = [(P b
0)−1(x0 − xb0) +HT

0 R
−1(H0x0 − y0) +MT

1 p1]
T δx0

+
K−1∑
k=1

[HT
k R
−1(Hkxk − yk)− pk −MT

k+1pk+1]
T δxk

+ [HT
KR

−1(HKxK − yK)− pK]T δxK

To kill some terms, we do the following in successive order.

13

pK = HT
KR

−1(HKxK − yK)

pk = HT
k R
−1(Hkxk − yk)−MT

k+1pk+1, k = K − 1, . . . 1

p0 = (P b
0)−1(x0 − xb0) +HT

0 R
−1(H0x0 − y0) +MT

1 p1

So, we have
δJ = (∇x0J)T δx0 = pT0 δx0

And hence,
∇x0J = p0

5.4. Extensions

There are practical variants of 3d-Var and 4d-Var. Some are

• Incremental 3D-Var and 4D-Var

• FGAT 3d Var (First guess at appropriate time)

There are also various extensions.

• Parameter estimation.

• Preconditioning

• Covariance matrix modeling

• Model error
dx

dt
= M(x) + η(t)

J(x0, η) =
1

2
||x0 − xb||2

1

2

∫ T

0

||y(t)−H(x)||2dt+
1

2

∫ T

0

||η(t)||2dt

5.5. 4d-Var applied to the Lorenz system

• Lorenz system is chaotic.

• We want to estimate the initial condition from observations.

• True initial condition is (1,1,1)

• Initial guess is (1.2,1.2,1.2)

14

6. References

• Data Assimilation: Methods, Algorithms, and Applications by Marc Bocquet, Mark Asch, and Maëlle
Nodet:

This book is a really strong consolidated collections of inverse methods. But it has a lot of mistakes
especially in the derivations. The variational examples in these can be found in Chapter 2 of this
book.

• Dynamic Data Assimilation: A Least Squares Approach by John M. Lewis, S. Lakshmivarahan, and
Sudarshan Kumar Dhall

This is probably a more standard book but it doesn’t have a wide breadth of topics and gets into
the details too much for my taste.

• Physics-based covariance models for Gaussian processes with multiple outputs Emil M. Constanti-
nescu, Mihai Anitescu

People interested in deriving equations for how the covariance of your physical system propagates
should check this out.

• PETSc TSAdjoint: a discrete adjoint ODE solver for first-order and second-order sensitivity analysis

Section 2 of this paper shows the process of deriving the discrete adjoint clearly.

15

	Inverse methods across various fields.
	Bayes Rule

	The different approaches to estimation would all result in the same answer if everything was linear and Gaussian
	BLUE
	The optimization perspective
	Bayes rule

	Kalman Filter
	Theory
	A linear example
	A nonlinear example

	Variational approach to inverse problems
	An ODE example
	Constant coefficient case
	Linear PDE example

	3d-Var and 4d-Var
	The stationary case: 3d-Var
	The non-stationary case: 4d-Var
	Adjoint approach to 4d-Var
	Extensions
	4d-Var applied to the Lorenz system

	References

